
A Machine Learning-based Approach for
Automated Vulnerability Remediation Analysis

Fengli Zhang∗, Philip Huff∗∗, Kylie McClanahan∗, Qinghua Li∗
∗University of Arkansas, Fayetteville, AR USA, {fz002, klmcclan, qinghual}@uark.edu

∗∗University of Arkansas, Little Rock, AR USA, pdhuff @ualr.edu

Abstract—Security vulnerabilities in firmware/software pose
an important threat to power grid security, and thus electric
utility companies should quickly decide how to remediate vulner-
abilities after they are discovered. Making remediation decisions
is a challenging task in the electric industry due to the many
factors to consider, the balance to maintain between patching and
service reliability, and the large amount of vulnerabilities to deal
with. Unfortunately, remediation decisions are current manually
made which take a long time. This increases security risks and
incurs high cost of vulnerability management. In this paper,
we propose a machine learning-based automation framework to
automate remediation decision analysis for electric utilities. We
apply it to an electric utility and conducts extensive experiments
over two real operation datasets obtained from the utility. Results
show the high effectiveness of the solution.

Index Terms—vulnerability and patch management, power
system security, machine learning

I. INTRODUCTION

Vulnerabilities in software/firmware pose an important
threat to power grid security since they could be exploited
by adversaries to control power system computers and de-
vices and launch devastating attacks. For this reason, security
vulnerability and patch management (VPM) is an integral and
currently one of the most important components of power grid
security [1]. Every electric utility (a company that generates,
transmits and distributes electricity) has a VPM mechanism
deployed at its security operations center. When security
vulnerabilities with their assets are discovered, an electric
utility needs to decide how to remediate the vulnerabilities
quickly to reduce security risks.

Making remediation decisions is not easy for electric util-
ities. First, although patching can fix vulnerabilities, it is not
always possible or preferable to patch vulnerable assets since
patching needs to reboot software and cause disruption of
service. Thus, although urgent patches are installed quickly,
electric utilities usually install other patches to their assets
under a certain maintenance schedule, e.g., quarterly. For
some vulnerabilities that need timely attention but patching
them might cause disruption of critical service, they can
be mitigated first before being patched later in the next
maintenance cycle. Second, vulnerabilities are far from equal
in terms of security risk. As an example, the risk of a Google
Chrome vulnerability applying to a supervisory control and
data acquisition (SCADA) operator workstation with constant
user browser activity differs drastically to an Internet browser
vulnerability on an application server with no Internet access.

This material is based upon work supported by the Department of Energy
under Award Number DE-OE0000779. This study is also supported in part
by the NSF under Award Number 1751255.

An organization should immediately react to the former but
can likely safely table the latter for a while. Remediation
decisions should reflect the priority of vulnerabilities based
on their risks to optimize the use of the limited security
resources. Third, remediation decisions should consider many
factors about vulnerabilities and assets, such as whether a
vulnerability has exploit code available, whether the vulnerable
asset is reachable from the Internet, the impact of exploits, and
whether patching disrupts power delivery service, making it a
complex reasoning process. Fourth, the volume of applicable
security vulnerabilities at any given time often exceeds the
capacity of organization’s to apply risk analysis. Over the past
two years, the National Institute of Standards and Technology
(NIST) National Vulnerability Database (NVD) shows the
number of software security vulnerabilities found and publicly
reported has more than doubled [2]. It is not uncommon for
an electric utility to have hundreds and even thousands of
vulnerabilities each month for hundreds of or more assets.

Unfortunately, currently remediation decisions are manually
made in electric utilities (at least in the U.S.). That induces
long delays (typically in the order of weeks) in deciding
the remediation actions for vulnerabilities. Such long latency
delays the application of remediation actions and poses high
security risks. The manual analysis also consumes a tremen-
dous amount of human time, which increases the cost of VPM.

To address this problem, we propose a machine learning-
based framework to automate remediation decision analysis
for electric utilities. The idea is to apply a predictive machine
learning model over vulnerability features and asset features
to predict the remediation decision for each vulnerability.
The model can be built over historical, manual remediation
decision data to capture and mimic how human operators
make decisions, but it can make decisions much more quickly
than manual analysis. Thus it has much shorter delays of
remediation decision making which can reduce security risks
while reducing the cost of VPM due to less manual efforts.
It is worthy to note that our machine learning approach only
recommends remediation decisions and human operators have
the ultimate authority to accept the predicted decisions or not.

The machine learning-based automation framework lever-
ages two recent developments related to the electric sector.
First, the North American Electric Reliability Corporation
(NERC) Critical Infrastructure Protection (CIP) version 5 [3]
regulatory requirements to maintain baseline configurations
ensure the availability of well-formed software asset informa-
tion in electric utilities. Second, the availability of well-formed
and machine readable vulnerability information through the
NIST NVD and third party service providers has significantly

improved over the past few years [2].
The contributions of the paper are summarized as follows:
• To the best of our knowledge, this is the first work study-

ing the feasibility of automating remediation decision
analysis in VPM, which is currently manually done at
electric utilities and many other organizations.

• We propose a machine learning-based framework for
automating remediation action analysis based on vul-
nerability features and assets features in the operation
environment. We choose decision tree as the learning
model since it resembles human reasoning and enables
generation of reason code for operators to verify the
predictions if needed. We also design methods to simplify
the reason codes for easier verification, and propose a
group-based asset management method to simplify asset
feature maintenance.

• We instantiate the framework for one electric utility, and
perform extensive experimental evaluations based on two
one-year datasets obtained from the electric utility. Eval-
uation results show that the approach is very effective.

The remainder of the paper is organized as follows. Sec-
tion II reviews related work. Section III introduces current
practices of VPM in electric utilities and presents results
of a survey. Section IV presents the machine learning-based
automation framework. Section V introduces the instantiation
of the framework in one electric utility. Section VI presents
evaluation results. The last two sections present discussions
and conclude the paper.

II. RELATED WORK

There are many VPM solutions available for corporate
use, such as GFI LanGuard [4], Patch Manager Plus by
ManageEngine [5], and Patch Manager by SolarWinds [6].
However, these solutions focus on vulnerability discovery and
deployment of patches rather than the decisions necessary
to optimize resources for vulnerability remediation. Most
solutions designed for VPM in electric utilities also fall into
this category, such as Doble Engineering’s PatchAssure [7],
Flexera [8], or FoxGuard Solutions [9]. They are unable to
analyze vulnerabilities against the operating environment and
make decisions on how to address vulnerabilities.

When addressing vulnerabilities, there are some publicly-
available sources of information. The NIST NVD [10] pro-
vides a well-structured, reliable data feed of vulnerabilities and
their corresponding information as they are reported. Vulners
[11] has a freely-accessible API to search vulnerability infor-
mation and discover available exploits; the Exploit Database
[12] also allows users to search for available exploits. Tenable
[13] has recently released a tool which provides predictive
analysis for exploitability of a security vulnerability. This
tool focuses on the exploit features whereas we explore the
relationship between the vulnerability and the asset to which
it applies. The exploitability from the Tenable tool could be
used as one feature of our machine learning framework.

There is also academic research on this topic. [14] and
[15] analyze large vulnerability datasets and report trends in
vulnerability attributes, and disclosure and discovery dates.

Vulnerability
Information

Asset
Information

Risk and
Impact

Analysis

Affect
System Patch

Routine
Scheduled

Patch
Mitigate

Patch
Immediately

Yes

No

Yes

No

Fig. 1: Vulnerability and patch management process

[16], [17], and [18] analyze patches and patch behavior, such
as the time window between when patches are released and
when they are installed or effective in protecting against
vulnerabilities. [19], [20], and [21] describe method for prior-
itizing patching based on the severity of an exploit. [22] and
[23] analyze the risks of network attacks based on attack graph.
However, these works do not combine vulnerability metrics
with organizations’ unique environment to analyze vulnerabil-
ity remediation decisions. Machine learning has been applied
to discover vulnerability in software and source code [24]–
[29], but our work uses vulnerability features with asset
information to determine how to remediate vulnerabilities.

III. CURRENT PRACTICE OF VPM IN ELECTRIC UTILITIES

This section presents the current practice for organizations
in the electric sector. As recommended practice for VPM
by the U.S. Department of Homeland Security (DHS) [30],
which is shown in Fig. 1, when vulnerabilities are discovered,
organizations first need to analyze whether a vulnerability
will affect their systems by considering both vulnerability and
asset information, and determine a remediation action for the
vulnerability such as patching and mitigation.

It is not easy for utilities to perform VPM in practice. New
vulnerabilities are discovered and new patches are released
almost every day. Utilities have to spend a lot of time and
human resources analyzing vulnerabilities and deciding on
remediation actions. The NERC CIP standards require strict
monthly obligations for identifying and assessing security
vulnerability and patches. Compliance to the standards is
monitored closely through NERC and monetary penalties
are regularly enforced. Likewise, the electric industry has a
punitive incentive to closely follow these regulations.

To gain more insights into the current practice, we also
conducted a survey in the electric sector. The survey was
distributed broadly to U.S. electric companies through na-
tional critical infrastructure protection groups and conducted
anonymously due to constraints in sharing information so
closely related to compliance with regulation. We received
responses from 16 electric companies. 100% of the responded
organizations perform manual analysis of vulnerabilities and
patches. Around 60% of them need process more than 3000
security vulnerabilities each year and half of respondents
spend more than 400 person hours monthly on VPM. All of
them keep historical records of vulnerabilities and patches.
The survey shows that VPM is indeed time-consuming and
intensive work for utilities in practice.

IV. MACHINE LEARNING-BASED FRAMEWORK FOR
REMEDIATION ACTION ANALYSIS

Security operators consider many factors to decide reme-
diation actions for vulnerabilities. The factors include vulner-

ability information such as whether the vulnerability affects
integrity, availability, or confidentiality, whether an exploit
of the vulnerability is already available, what Common Vul-
nerability Scoring System (CVSS) score [31] is, and so on.
The factors also include asset information such as whether
the vulnerable device is a critical field device for power
grid operations, whether the vulnerable device is sensitive to
confidentiality/integrity/availability attacks, what the software
is, and so on. Decisions are made considering the values of
these factors. For example, if a vulnerability is at a non-critical
device, only has little impact and there is no exploit available
yet, it does not need to be addressed now and can be patched
in the next scheduled cycle (denoted as Patch-Later). If a
vulnerability can be exploited, and it is at a user workstation,
the decision is to patch immediately (denoted by Patch-Now);
if it is at a critical server, because patching a server may
influence the power grid service, the decision is to mitigate
it first and patch it later in the next scheduled cycle (denoted
by Mitigate-Now-Patch-Later).

This process is tedious and repetitive, and we propose to
automate remediation action analysis. Intuitively, one might
consider manually making a set of rules (where each rule
consists a combination of factor values for all factors and
a decision for this combination) and use them to automate
remediation action analysis similar to expert systems [32].
However, there are practical challenges with rule-based anal-
ysis: to cover all possible cases, the number of rules will
grow exponentially. For example, at one of our utility partners,
around 16 factors are considered and each factor has a number
of values. The total number of possible combinations of factor
values is about 240 billion. It is infeasible to manually generate
so many rules in the first place, not to mention maintaining
and updating them dynamically.

Vulnerability
Management

Asset
Management

Vulnerability
Features

Asset Features

Machine Leaning
Model

(Decision Tree)

Remediation
Action

Simplified
Reason
Code

Fig. 2: Machine learning-based framework

We adopt an approach that uses machine learning to au-
tomate the analysis. We propose a machine learning-based
framework (see Fig. 2) for remediation decision analysis
which, based on vulnerability and asset features, automatically
analyzes vulnerabilities and predicts remediation decisions,
e.g., whether to patch them now or defer the patching to
next regularly scheduled maintenance cycle. Central to the
framework is the machine learning model, which not only
outputs an remediation action but also an easy-to-verify rea-
son code in case operators want to very some predictions.
The model can be trained from historical operation data
that contains vulnerability information, asset information, and
manual remediation decisions for a set of vulnerabilities. Our
industry survey mentioned in Section III indicates that all the
electric utilities surveyed maintain their historical operation

data. This is expected specially in electric sectors because
of the regulatory requirements for VPM. Our framework is
consistent with the DHS guideline described in Section III,
but introduces machine learning-based automation to it and
provides more details.

The goal of this work is to make machine learning pre-
dictions as accurate as manual decisions. That can help re-
duce security risks through making remediation decisions for
vulnerabilities much more quickly and taking actions more
quickly (see Section VI-H for analysis). We acknowledge that
manual decisions might not be optimal or correct, and leave
it for future work to study how to make better decisions than
human operators.

TABLE I: Vulnerability Characteristics
Attack Vector

Network Adjacent Local

User Interaction

High Medium Low

Privilege

High Low None
Confidentiality Impact

Complete Partial None
Integrity Impact
Complete Partial None

Availability Impact

Complete Partial None

CVSS Score

Value in 0 - 10

Attack Complexity

High Low

Exploitability

High Functional Proof-of-
Concept Unproven

A. Vulnerability Features and Management

Vulnerability features are already well established by the
NVD. In the NVD, each vulnerability comes with a set of
CVSS metrics that characterizes the vulnerability in different
aspects. In our framework, we use CVSS metrics as vulnera-
bility features since they are relevant to risk assessment and
remediation decision analysis. The features and their possible
values are shown in Table I. The CVSS score is a number
between 0 and 10 determined by the metrics to describe, in
general, a vulnerability’s overall severity. Attack Vector shows
how a vulnerability can be exploited, e.g., through the network
or local access. Exploitability indicates the likelihood of a
vulnerability being exploited. High as the highest level means
exploit code has been widely available, and Unproven as the
lowest level means no exploit code is available, with two other
levels in between. User Interaction (Privilege, resp.) indicates
the amount of user interaction (the level of privilege, resp.)
needed by an attacker to exploit the vulnerability. The other
four metrics describe the complexity of attack and the impact
of attack in confidentiality, integrity, and availability. Detailed
explanations of the metrics can be found in [31].

The NVD publishes vulnerabilities for a variety of software
products daily. Each vulnerability is identified by a unique
Common Vulnerabilities and Exposures (CVE) ID, such as
CVE-2016-8882. An organization can retrieve the vulnera-
bilities (including CVEs and vulnerability features) of their
assets through identifying the Common Platform Enumeration
(CPE) names [10] of their assets and then querying the NVD
(NVD provides API for such queries) using the CPEs. CPE
is a naming standard to represent software and structured in a
manner making it possible to search applicable vulnerabilities
[33] automatically. An organization can manually identify
CPEs of their assets once and use them for years without
needing to update them, and thus the maintenance cost is low.

It is worthy to note that the learning framework is general
and can support other vulnerability features that a company
might use (e.g., other features provided by third-party ser-
vices). Also, if a company only uses part of the CVSS metrics
in remediation decision analysis, then the learning model can
be built upon those metrics.

B. Asset Features and Management

Although vulnerability features have a well established
CVE standard for maintaining publicly disclosed vulnerabil-
ity information, vulnerability features alone do not provide
sufficient information for meaningful remediation analysis on
individual cyber assets. One treats very differently a vulnerable
system providing direct services on the Internet (e.g. a web
server) from the same vulnerability applying to an isolated
system in a highly controlled local network. Likewise, browser
vulnerabilities apply very differently to different cyber assets.
Clearly an office computer primarily used for email and web
browsing is significantly more vulnerable than a server with
almost no user interaction which happens to have the same
browser installed. The NVD CVSS system recommends to
use three asset features, confidentiality requirement, integrity
requirement, and availability requirement, to calculate envi-
ronment scores. However, only the three asset features are
insufficient and security operators not only consider these
features when deciding vulnerability remediation. For exam-
ple, whether the asset can be accessed externally is a critical
factor when a vulnerability can be launched through network.
Thus we identify two more asset features to complement
those three. Another difference from the environmental CVSS
system is that our approach uses machine learning to integrate
these features into one decision making model rather than
calculating environmental scores using simple formulas. All
the five asset features are described below.

• Workstation User Login: (Yes or No) - Associates with
the vulnerability user interaction feature. Whether the cy-
ber asset provides an interactive workstation for a human
operator. If the cyber asset does not have interactive use,
then vulnerabilities affecting applications such as web
browsers would have significantly less impact.

• External Accessibility: (High, Authenticated-Only or
Limited) - Associates with the vulnerability attack vector
feature. The degree to which cyber assets are externally
accessible outside of the cyber system. For example,
High may mean a web server providing public content,
and Authenticated-Only may be a group of remotely
accessible application servers which require login before
use. Limit means there is no direct connectivity to the
external network (but it could be connected to a device
that is externally accessible).

• Confidentiality Requirement: (High, Medium or Low) -
Associated with the vulnerability confidentiality impact
feature. If the confidentiality requirement of an asset is set
as “High”, loss of confidentiality will have severe impact
on the asset.

• Integrity Requirement: Similar to Confidentiality Re-
quirement but focused on integrity.

• Availability Requirement: Similar to Confidentiality Re-
quirement but focused on availability.

Again, an organization can always customize for their needs
by adding and/or removing some asset features based on their
operation practice.

Group-based asset feature management Whereas the
software vulnerability feature set has a worldwide community
to maintain consistent machine-readable features (i.e. through
the NVD), the cyber asset features must be maintained by the
organization. According to our survey, one organization can
have thousands of assets and assets may change frequently
(i.e. one asset may be removed or another new asset might be
added). Due to the large amount of assets and their instability,
it is cumbersome to analyze and maintain the characteristic
values for each asset. In order to reduce the cost of mainte-
nance, we divide assets into asset groups based on their roles
or functions. For example, all Remote Terminal Units (RTUs)
of a specific vendor and function can be categorized into one
group since they have similar features. Similarly, all firewalls
can be in one group. The assets in the same group share the
same set of values for asset features. Then human operators
can determine and maintain the feature values for each group.
In our experiments with the electric utilities, categorization
groups remained mostly consistent through large increases in
asset population. For example, an operator workstation in a
control center has the same features whether there are five or
100. Although assets may come and go, we find it is much less
common for an entirely new asset group to appear. Since the
number of groups is much smaller than the number of assets,
grouping will greatly reduce the amount of efforts needed in
maintaining feature values.

C. Machine Learning Algorithm Selection

Many machine learning algorithms are available today and
we need to identify the best one to solve our problem. In
this framework, we adopt the decision tree model to auto-
mate remediation action analysis for the following reasons:
(1) Decision tree-based decision making resembles human
reasoning. On each level of the tree, the model chooses
the most important factor and splits the problem space into
multiple branches based on the factor’s value. Unlike many
other machine learning models such as neural networks and
logistic regression that are not very transparent, the decision
tree model allows us to see what the model does in every
step and know how the model makes decisions. Thus the
predictions from decision tree can be interpreted, and a reason
code can be derived to explain predictions. Human operators
can verify the predictions based on reason code. (2) For this
VPM automation problem, decision tree is proven to have very
good performance in our experiments compared with several
other machine learning algorithms.

For illustration purposes, Fig. 3 shows a sample trained
decision tree model in the remediation action analysis context.
The prediction process for a vulnerability based on this tree
is as follows. When a new vulnerability data record is fed
into the model for prediction, the model will first look at the
exploitability feature at the root node. If the exploitability is

...

...

Vulnerability
Info:

CVSS score
<=7.3?

Vulnerability Info:
Unproven

Exploitability?

No Yes

Asset Info:
Workstation

Login?

Vulnerability Info:
CVSS Score

<= 9.15?

No Y
es

No Yes

Patch
Vulnerability Info:

Attack from
network?

No Yes

Asset Info:
Confidentiality
requirement is

Medium?

Asset Info:
User Interaction

is Low?

Asset Info:
Confidentiality

requirement is Medium?

No Yes

Vulnerability
Info:

CVSS Score
<= 6.3?

Vulnerability Info:
Availability

Impact is Partial?

Asset Info:
User

Interaction is
Low?

No

Asset Info:
External

Accessibility is
Authenticated-

only?

Yes

...

Fig. 3: An example of trained decision tree model

not Unproven, it will go to check the asset feature ”workstation
login”. If the workstation allows user login, it means it faces
more risks and must be patched immediately. Other tree
branches can be traversed by other records similarly.

D. Reason Code Generation

It is very difficult for a predictive machine learning tool to
be 100% accurate. To increase transparency in the predictive
decision, our approach provides human operators with both
prediction confidence and a readable description (called reason
code) of why the model selected the decision. The use of
decision tree makes reason code generation feasible. A trained
decision tree model is a collection of connected nodes and
splitting rules organized in a tree structure. Then the reason
code for each leaf node (decision node) can be derived by
traversing the tree path and combining the splitting rules of
the nodes in the path. However, for some long paths (e.g., one
tree we built over a utility’s data has an 18-node path), the
reason code could become very long, redundant, and hard to
read if simply combining the splitting rules. To address this
issue, we use two rules to simplify and shorten the raw reason
codes derived from the decision path.

• Intersection: we can reduce redundancy by finding range
intersection. For example, for continuous data such as
CVSS scores, if one condition in the reason code is
“CVSS Score is larger than 5.0” and the other condition
is “CVSS Score is larger than 7.0”, then we can find
the intersection and the reason code can be reduced to
“CVSS Score is larger than 7.0”.

• Complement: for some features that appear in several
conditions of a path, we can replace these conditions
by using its complementary condition. For example, for
integrity impact, the set of possible values is Complete,
Partial, None. If the reason code is “Integrity impact is
not None, and Integrity impact is not Partial”, since the
complement of Partial, None is Complete, the reason code
can be reduced to “Integrity is Complete”.

E. Model Dynamic Training

The decision rationales of an electric utility are usually
quite stable, but there are still changes in a longer time
scale. Thus, the decision tree model should be dynamically
updated and trained with the most recent historical data to
capture the changes. For example, in each month (which is
the typical working cycle of VPM in electric utilities), the

machine learning model is retrained with the previous n (n can
be customized for each organization) months’ data. Note that
the predicted decisions output by the model cannot be used as
training data since the predictions are not always accurate. To
address this issue, for each month’s predicted decisions, human
operators can verify a small portion of the predictions (e.g.,
10%) to check the framework’s performance, and these man-
ually verified/checked vulnerabilities and predictions can be
used as training data for retraining the model. Our experiments
will show that a small portion of manual verification each
month will achieve high prediction accuracy for the retrained
model (see Section VI).

V. INSTANTIATION OF THE FRAMEWORK: A CASE STUDY
FOR AN ELECTRIC UTILITY

To study how the machine learning-based framework works
in the real world, we apply and instantiate the framework
for one electric utility based on its VPM operation practices
and data. Due to the high sensitivity of the VPM operation
information, the company required us to anonymize its name,
and thus we refer to it as OrgA in this paper.

In this instance of the framework, the vulnerability features
used are the nine attributes in CVSS metrics, i.e., CVSS Score,
Exploitability, Attack Vector, Attack Complexity, User Inter-
action, Privilege, Confidentiality Impact, Integrity Impact, and
Availability Impact. The asset features used are Workstation
User Login, External Accessibility, Confidentiality Require-
ment, Integrity Requirement, and Availability Requirement.
These features are used by human operators when they make
remediation decisions. The possible remediation actions are
Patch-Now, Mitigate-Now-Patch-Later, and Patch-Later, which
are also used by the operators.

To get asset features, an asset list is first obtained from the
company’s baseline configuration management tool. Then the
assets are grouped into 43 groups based on their functions. For
each asset group, the value for each asset feature is identified.
For the company, these asset features and feature values are
quite stable, with no need to change in years. To get vul-
nerabilities and vulnerability features, a CPE is generated for
each software/firmware based on software/firmware name and
version which are also available in the baseline configuration
management tool. Then we use a Python program developed
by us to automatically query the NVD through its API using
the CPE as a parameter and retrieve applicable vulnerabilities
including their CVEs and CVSS vectors from the NVD.
Vulnerability retrieval needs to be done pretty frequently, and
the Python program makes it automatic and easy. Note that
third party services that aggregate vulnerabilities for utilities
also provide the same CVE and CVSS information usable in
our framework.

The decision tree is implemented in Python based on the
library Scikit-learn. The utility maintains VPM operation data
including historical vulnerabilities, their associated assets, and
the manual remediation decisions for them made by operators.
That allows a decision tree model to be trained using the
utility’s historical data. All the features except CVSS score
are categorical. We convert these categorical values to binary

data with one hot encoding. The CVSS score is normalized by
scaling between 0 and 1. Gini is used as the metric to measure
the split of the tree. It is worthy to note that some decision tree
parameters should be tuned based on the dataset to achieve best
performance (see Section VI-B for details). After the model is
trained, when a new vulnerability is obtained, its vulnerability
features together with its asset features will be fed into the
decision tree model for analysis.

The model outputs three pieces of information: predicted
decision, confidence, and reason code. The confidence valued
between 0 and 1 shows how confident the model is with
the prediction. It can guide operators to select predictions for
manual verification, e.g., verifying those predictions with low
confidence. Reason code helps human operators to understand
and verify the prediction. Table II shows examples of the
predictions for three different vulnerabilities. The first one
shows that the predicted action is ‘Patch Later’ with 100%
confidence. The reasoning for that choice is that the vulnera-
bility is not exploitable, the CVSS score is less than 4.2, which
suggests a low asset impact, and it has a medium confiden-
tiality impact. The other two predictions can be interpreted in
a similar way. We will present detailed experiment results in
the next section.

TABLE II: Sample prediction results for three vulnerabilities

ID Exploitability ID High Functional Proof-of-
Concept Unproven

1 High 1 1 0 0 0
2 Functional 2 0 1 0 0
3 Proof-of-Concept 3 0 0 1 0
4 Unproven 4 0 0 0 1

Table 1. Vulnerability Characteristics

 CVSS
Score

Attack
Vector

User
Interaction Privilege

Vulnerability
Confidentiality

Impact

Vulnerability
Integrity
Impact

Vulnerability
Availability

Impact
Exploitability

Possible
Values

Value
in 0-
10

Network,
Adjacent,

Local

High,
Medium,

Low

Multiple,
Single,
None

Complete,
Partial,
None

Complete,
Partial,
None

Complete,
Partial,
None

High,
Functional,
Proof-of-
Concept,
Unproven

 Software Asset Workstation
User Login

External
Accessibility

Asset
Confidentiality

Impact

Asset
Integrity
Impact

Asset
Availability

Impact

Remediation
Decision

Possible
values

Software
name

Asset
name

Yes,
No

High, Limited,
Authenticated-

Only

High,
Medium,

Low

High,
Medium,

Low

High,
Medium,

Low

Patch Now,
Patch Later,

Mitigate

Predicted action Confidence Reason code

Patch-Later 1 Unproven Exploitability, CVSS Score is less
than 4.2 and Medium Confidentiality Impact

Mitigate-Now-Patch-
Later 0.91

Proof-of-Concept Exploitability, Network
Attack, High External Accessibility

and High Confidentiality Impact

Patch-Now 1 not Unproven Exploitability and this
Workstation allows users’ login

VI. EVALUATIONS

This section presents experimental results for the instance
of the framework described in Section V.

A. Dataset
We collected two datasets from OrgA, each containing one

year of data. One dataset was collected from June 2016 to
May 2017, with 3,476 vulnerability data records. The other
dataset was collected from January 2018 to December 2018,
with 3,660 records. For convenience, we refer to the two
datasets as 2017A and 2018A respectively. Each vulnerability
data record includes the following information: its associated
software, vulnerability features, its associated asset, and asset
features. Additionally, each record also includes the remedia-
tion decision for the vulnerability made by human operators.

B. Parameter Tuning for Decision Tree
To prevent the tree from going too deep and avoid overfit-

ting, the minimum number of samples at a leaf node (if the
number of samples in a node is no more than the minimum
number, the node will stop splitting) and the maximum depth
of the tree should be properly set. These two parameters
can be tuned based on the deployment environment. In our
implementation, the 2017A dataset from the utility is used to
tune these two parameters. In particular, a random 70% of the
dataset was used as training data and the other 30% was used

as testing data, and the two parameters were tuned based on
the testing performance.

min_samples_leaf

1 2 3 4 5 6 7 8 9 10 11

P
re

d
ic

ti
o
n
 a

c
c
u
ra

c
y
(%

)

95.5

96

96.5

97

97.5

Fig. 4: Prediction over
min leaf samples

Max Depth of Tree

10 15 25 50 75 100

P
re

d
ic

ti
o
n
 A

c
c
u
ra

c
y
(%

)

96

96.5

97

97.5

98

Fig. 5: Prediction over tree depth

We experimented on different minimum numbers of sam-
ples in leaf nodes and the results are shown in Fig. 4.
“min samples leaf” is the minimum number of samples re-
quired for a leaf node. The smaller “min samples leaf” is, the
more the tree splits and the deeper the tree is. As shown in
Fig. 4, when “min samples leaf” is 8, it has highest prediction
accuracy 97.22%. Here, Prediction accuracy is defined as the
fraction of predicted decisions that are the same as human
operator’s manual decisions. When “min samples leaf” de-
creases, the prediction accuracy decreases since the tree is
too specific to generalize new samples. If “min samples leaf”
is too large where the tree is short, the prediction accuracy
also decreases because the tree does not capture sufficiently
fine-grained information of the training data. Thus we set
the minimum number of samples in leaf nodes as 8 for the
remaining experiments.

The prediction accuracy under different tree max depth
is shown in Fig. 5. When the tree depth goes over 25, the
prediction accuracy does not change any more. Usually, when
the max depth is larger, the tree is allowed to go deeper and
there will be an overfitting issue. However, in this situation,
since the the minimum number of leaf is set as 8, the tree will
stop splitting when the leaf samples is equal to or less than 8
and thus it cannot go too deep. We set the tree max depth as
50 for the remaining experiments.

C. Prediction Accuracy

97.02

1.24

98.82

1.09
0

20
40
60
80

100

Prediction
accuracy on

2017A dataset

False negative
on 2017A

dataset

Prediction
accuracy on

2018A dataset

False negative
on 2018A

dataset

Prediction Results (%)

Fig. 6: Prediction accuracy on 2017A and 2018A dataset

In this experiment, we test the model over the two datasets
from organization OrgA separately. Each dataset is randomly
split into two parts, 70% for training and 30% for testing. We
use prediction accuracy and false negative rate to describe the
performance. The false negative rate is defined as the fraction
of predictions where the manual decision is Patch-Now or
Mitigate-Now-Patch-Later but the prediction is Patch Later.
False negative rate should be minimized since it delays the

remediation of vulnerabilities while they should be addressed
more timely. The results are shown in Fig. 6. For the 2017A
dataset, the prediction accuracy is 97.02%, and false negative
is 1.24%. For the 2018A dataset, the prediction accuracy is
98.82% and the false negative is 1.09%. The accuracy is
quite high, which means using machine learning to predict
remediation actions is feasible.

Exploration of False Prediction Although the accuracy
of machine learning prediction is already high, we still want
to figure out what caused false predictions. For the 2017A
dataset, after exploring the 2.98% of falsely predictions, we
found that they were mainly caused by inconsistent manual
remediation decisions in the historical dataset where some
vulnerabilities with identical features were given different
manual decisions, which can confuse the decision tree (and
actually any other learning algorithm). The same problem
caused the prediction error over the 2018A dataset as well.

This situation happens for several reasons. A utility com-
pany might have multiple security operators analyzing vulner-
abilities and making remediation decisions. Different operators
may have different decisions for vulnerabilities with identical
features and even for the same vulnerabilities. Even if there
is only one operator, for two vulnerabilities with identical
features, s/he might make different decisions when processing
them at different times (e.g., last month and this month). This
is especially possible for vulnerabilities whose risk level is not
at the clearly high risk end (which typically goes to Patch-
Now and Mitigate-Now-Patch-Later) or the clearly low risk
end (which typically goes to Patch Later) but goes in the
middle. This is a kind of human mistake that operators cannot
totally avoid.

For each set of vulnerability records that have identical
features but different manual decisions, if we assume the
majority decision of this set is the correct decision and the
records with minority decisions are deemed errors and re-
moved from the dataset (about 3% records are removed for the
2017A dataset), then the prediction accuracy achieves 99.8%
and the false negative rate achieves 0.20% for the 2017A
dataset, with similar improvement for the 2018A dataset. This
result shows that the prediction performance can be improved
significantly if there are less inconsistent manual decisions in
the training dataset. We plan to further explore this problem
in collaboration with the utility company.

We also found that, for records with same features but
different manual decisions, their prediction confidence will
be relatively low. For example, suppose one leaf node of
the decision tree contains four records with exactly the same
features, and three of them were remediated by Patch-Now and
one by Mitigate-Now-Patch-Later. Then the decision tree will
output Patch-Now as the predicted decision with confidence
0.75. If operators are able to verify/correct the predictions with
relatively low confidence (i.e. under 0.9), that can improve
the performance to 99.42% accuracy and 0.38% false negative
for the 2017A dataset and 99.45% accuracy and 0.09% false
negative for the 2018A dataset. Since there are only about
10% of predictions with confidence under 0.9, the manual
verification time will be much shorter than manually making

all the remediation decisions.

D. Reason Code Verification

Each prediction comes with one reason code so that users
can verify the prediction when needed. Here, we first look
into the length of reason code. For reason codes, we use the
number of conditions that a reason code has to denote its
length. For example, the length of reason code “Unproven
Exploitability, CVSS Score is less than 4.2, and Medium
Confidentiality Impact” is 3 because it includes 3 conditions.
For predictions described in Section VI-C, the average length
of reason code is 6.9 conditions. After applying the length
reduction rules proposed in Section IV-D, the average length
is reduced to 3.6 conditions. For example, the reason code
“Unproven Exploitability, CVSS Score is less than 9.15,
External Accessibility is not High, CVSS Score is less than
6.30, External Accessibility is not Authenticated-Only, and
Medium Availability Impact” can be reduced to “Unproven
Exploitability, CVSS Score is less than 6.3, Limited External
Accessibility, and Medium Availability Impact”. The length
reduction rules can significantly reduce the length of the reason
codes so that it can be easier to understand and verify.

We then test whether the reason codes generated by the
tool are sufficient to verify predicted decisions, check the time
needed to verify the reason codes, and compare it with the
time needed to verify predictions based on the corresponding
vulnerabilities’ raw features. To do this, we randomly selected
100 predictions from the testing data, and asked a security op-
erator from the organization OrgA to verify these predictions
based on reason codes and based on the raw features.

Results show that 98 out of the 100 reason codes are
sufficient to verify the predicted decisions. One prediction is
found to be wrong through the reason code verification. The
other one reason code is insufficient to verify the prediction.

The time spent on reason code verification and raw feature
based verification is shown in Fig. 7. Most of the reason codes
can be verified in a very short time. 35% of reason codes can
be verified in 5 seconds, and 90% in 45 seconds. The average
verification time is 28.8 seconds. From the figure, it can be
seen that verification based on raw features requires much
more time than verification based on reason code. Only 35% of
predictions can be verified in 60 seconds and about 40% takes
over 4 minutes to verify. The average time of raw feature based
verification is 7 minutes. The results show that the efficiency
of reason codes. It is reasonable, because reason codes are
derived (and optimized) from the decision tree and the decision
tree to some extent prioritizes the judging conditions in the
decision making process based on their importance and hides
unimportant factors from being considered.

E. Prediction with Dynamic Training

In the above experiments, the twelve months’ data are
randomly split into training data and testing data. In practice,
the decision tree model should be dynamically updated and
trained with recent historical data as discussed in Section IV-E.
In this experiment, we test the model’s prediction accuracy
with dynamic training. In particular, we assume the operator

Time Required (Second)

5 10 15 30 45 60 120 240 600 12001800C
u
m

u
la

ti
v
e
 D

is
tr

ib
u
ti
o
n
 F

u
n
c
ti
o
n

0

0.2

0.4

0.6

0.8

1

Verification on

Reason Code

Decision Making

on Full Features

Fig. 7: Time of reason code-based
and feature-based verification

7 8 9 10 11 12P
re

d
ic

ti
o
n
 A

c
c
u
ra

c
y
(%

)

96

98

100

Month

7 8 9 10 11 12

F
a
ls

e
 N

e
g
a
ti
v
e
(%

)

0

1

2

Fig. 8: Monthly prediction accuracy

randomly selects 10% of each month’s predictions to check
and verify. At each month, we use the recent six months’
vulnerabilities and decisions that have been manually checked
by operators as training data to train a new decision tree model,
and use it to predict for next month. The prediction results
over the 2018A dataset are shown in Fig. 8. The x-axis means
which month it is predicted for and y-axis is the prediction
accuracy. For example, when the x-axis is 7, it uses 10%
of the first six months’ data to train the model and predicts
decisions for month 7. Then it uses 10% of the data from
the second month to the seventh month to train the model
and predict for the eighth month’s vulnerabilities. It can be
seen that the prediction accuracy is not the same for different
months, but overall it is high. The prediction performance for
the 2017A dataset under dynamic training has similar trends.
Thus, dynamic training is feasible.

F. Prediction with Different Feature Sets

The above experiments used 16 features including software
name, vulnerability characteristics, asset name, and asset fea-
tures. Here, we evaluate the usefulness of different features
for prediction, and show the results over the 2017A dataset in
Fig. 9. Without software name and asset name as features, the
prediction accuracy only slightly decreases. However, without
software name, asset name and asset features (i.e., only
vulnerability characteristics), the prediction accuracy drops to
83.78%; without software name, asset name and vulnerability
features (i.e., only asset features), the prediction accuracy
drops to 68.33%. The results indicate that both vulnerability
features and asset features are important.

97.02 96.74 96.45 96.16
83.78

68.33

1.24 2.2 1.63 2.21
14.2

27.15

0

20

40

60

80

100

120

Full Features Without
Software Name

Without Asset
Name

Without
Software and
Asset name

Only
Vulnerability

Characteristics

Only Asset
Feature

Prediction Accuracy (%) False Negative (%)

Fig. 9: Prediction on Different Feature Sets

G. Comparison with Other Models

We compare the decision tree model with other popular
machine learning models: logistic regression, support vector
machine (SVM), Naive Bayes, k-nearest neighbors (KNN)
and neural network. The 2017A dataset was used, with a
random 70% of it as training data and the remaining 30% as
testing data. As shown in Fig. 10, the decision tree model

97.02 96.55 94.49
83.38

91.74 95.48

1.24 1.76 2.26 2.65 3.83 1.67
0

10
20
30
40
50
60
70
80
90

100

Decision Tree Logistic Regression SVM Naïve Bayes KNN Neural Network

Prediction Accuracy False Negtive

97.02 96.55 94.49
83.38

91.74 95.48 94.97

1.24 1.76 2.26 2.65 3.83 1.67 2.87
0

10
20
30
40
50
60
70
80
90

100

Decision
Tree

Logistic
Regression

SVM Naïve Bayes KNN Neural
Network

Neural
Network

with Reason
Generator

Prediction Accuracy False Negtive

Fig. 10: Comparison with other machine learning models

performs better than other models. Logistic regression and
neural network perform close to decision tree. However, they
are not as easily explainable as decision tree.

Considering recent work on rationalizing neural networks,
we adapted and implemented a neural network model with
reason generator [34] to have a comprehensive comparison
with decision tree. The details of adaptation and implementa-
tion are omitted due to the space limitation and will provided
in an extended version of this paper. As shown in Fig. 10,
decision tree also outperforms the neural network with reason
generator in prediction. As to reason code, the average length
of reason codes generated by decision tree is about 4, while
that of neural network is around 8.5. When reason codes are
sufficient to support predictions (see Sect. VI-D), the shorter
reason codes of decision tree are easier to interpret/verify.

H. Remediation Analysis Delay and Cost

Delay of remediation decision analysis Here, we analyze
the time saved by automating the decision analysis for OrgA.
We first compute the time required by the machine learning-
based framework. The vulnerability analysis and decision pre-
diction time is in millisecond scale, which can be negligible.
When the machine learning model is dynamically trained, it
will require operators to verify 10% vulnerability predictions
as discussed in Section VI-E. The average time of prediction
verification is 28.8 seconds as shown in Section VI-D. For the
3476 vulnerabilities in the year covered by the 2017A dataset,
the average verification time for OrgA is 2.3 personal hours
per month (which is the typical decision cycle). Suppose there
is only one operator. This can be completed within 2.3 hours,
making the decision delay 2.3 hours.

Based on the test in Section VI-D, the average time of
manually analyzing each vulnerability is 7 minutes. The total
manual analysis time for OrgA is 33.8 person hours per month.
Again, suppose there is only one operator. Theoretically, this
task can be completed in 33.8 hours, making the decision delay
33.8 hours. However, in practice, when the time needed for a
task is long, the total time span of completing the task will be
more than simply the person hours. Human operators cannot
work 24 hours a day like a machine, may take a rest now and
then, need to perform many other duties such as meetings,
reporting and training, and can be distracted by other things
like chatting with each other. All of these factors can generate
extra delay of remediation decision making. That might make
the analysis process span across days and even weeks. This is
validated by our survey described in Section III, where 50%
of participants indicated it takes them more than 16 days to
complete remediation action analysis for each cycle.

According to this sketch analysis, the delay of completing
remediation decision analysis with machine learning could
be hours, but the delay with manual decision making could
be days and even weeks. When remediation decisions for
vulnerabilities can be made earlier, those high-risk vulner-
abilities (that need to be patched now or mitigated now) can
be identified earlier and hence remediated earlier, which will
greatly reduce the security risks of electric utilities. Hence,
utilities using our machine learning framework will face much
less risks.

Cost of remediation decision analysis Since the VPM
problem for security operations is one of human resource
allocation, we analyze the personnel cost saving brought by
machine learning. From the above delay analysis, it can be
seen that with machine learning 31.5 person hours can be
saved each month for OrgA. That results in 378 person
hours of saving per year. For larger utilities with more assets,
the saving is even more. For example, in our survey, one
participant company indicates it has 12,000 vulnerabilities per
year. That would make the total saving to 1,305 person hours.

VII. DISCUSSIONS

Even though the proposed framework has only been tested
on electric utilities, being consistent with the DHS guideline,
it is general and can be applied to many other organizations
especially critical infrastructures, which suffer from similar
VPM challenges and constraints. The way of applying the
framework to other organizations is similar to the applica-
tion on electric utilities, but the identified asset features and
remediation decisions might be different.

In some cases, operation contexts might affect remedia-
tion actions. For example, when one vulnerability outbreaks
and makes to headlines (e.g., the Meltdown vulnerability),
a company’s administrators might want it to be remediated
as soon as possible due to pressure from public reputation.
Then operators might choose Patch-Now or Mitigate-Now-
Patch-Later instead of Patch Later, even if the decision tree
prediction based on vulnerability/asset features is Patch Later.
In such cases, operators can use their decisions to override
decision tree predictions. We will explore inclusion of such
operation contexts in automation in future work.

VIII. CONCLUSIONS

This paper addressed the need for more effective decision
support to address VPM challenges and proposed a decision
tree based framework to automate the analysis remediation
decisions for vulnerabilities. We tested an instance of the
framework customized for one electric utility over two datasets
obtained from the utility. Results showed high prediction
accuracy and time savings. These results demonstrate the value
in applying machine learning to automate VPM processes.

REFERENCES

[1] “Today’s state of vulnerability response: Patch work demands attention,”
https://www.servicenow.com/content/dam/servicenow/documents/analyst-
research/ponemon-state-of-vulnerability-response.pdf, 2018.

[2] https://nvd.nist.gov/vuln/data-feeds.
[3] “Cip standards,” https://www.nerc.com/pa/Stand/Pages/CIPStandards.aspx.

[4] “Gfi languard,” https://www.gfi.com/products-and-solutions/network-
security-solutions/gfi-languard.

[5] https://www.manageengine.com/patch-management/?itsecuritySol.
[6] https://www.solarwinds.com/patch-manager.
[7] “Doble patchassure,” https://www.doble.com/product/patchassure/.
[8] “Flexera,” https://www.flexera.com/producer/.
[9] “Foxguard solutions,” https://foxguardsolutions.com/.

[10] “National vulnerability database,” https://nvd.nist.gov/vuln.
[11] Vulners, “Vulners api,” https://vulners.com/products.
[12] “Exploit database,” https://www.exploit-db.com/.
[13] https://www.tenable.com/cyber-exposure/platform.
[14] M. Shahzad, M. Z. Shafiq, and A. X. Liu, “A large scale exploratory

analysis of software vulnerability life cycles,” in Proc. of the Int’l
Conference on Software Engineering. IEEE Press, 2012, pp. 771–781.

[15] S. Frei, M. May, U. Fiedler, and B. Plattner, “Large-scale vulnerability
analysis,” in ACM SIGCOMM workshop on Large-scale attack defense,
2006, pp. 131–138.

[16] F. Li and V. Paxson, “A large-scale empirical study of security patches,”
in ACM SIGSAC Conference on Computer and Communications Security
(CCS), 2017, pp. 2201–2215.

[17] A. Arora, R. Krishnan, R. Telang, and Y. Yang, “An empirical analysis
of software vendors’ patch release behavior: impact of vulnerability
disclosure,” Information Systems Research, 2010.

[18] A. Nappa, R. Johnson, L. Bilge, J. Caballero, and T. Dumitras, “The at-
tack of the clones: A study of the impact of shared code on vulnerability
patching,” in IEEE Symposium on Security and Privacy (SP).

[19] L. Allodi and F. Massacci, “Attack potential in impact and complexity,”
in International Conference on Availability, Reliability and Security.
ACM, 2017.

[20] S. Treetippayaruk and T. Senivongse, “Security vulnerability assessment
for software version upgrade,” in IEEE/ACIS International Conference
on Software Engineering, Artificial Intelligence, Networking and Paral-
lel/Distributed Computing (SNPD), 2017, pp. 283–289.

[21] C. Xiao and A. Sarabi, “From patching delays to infection symptoms:
Using risk profiles for an early discovery of vulnerabilities exploited in
the wild,” in USENIX Security Symposium, 2018, pp. 903–918.

[22] P. B. Lamichhane, L. Hong, and S. Shetty, “A quantitative risk analysis
model and simulation of enterprise networks,” in IEEE Annual Infor-
mation Technology, Electronics and Mobile Communication Conference
(IEMCON), 2018, pp. 844–850.

[23] A. Singhal and X. Ou, “Security risk analysis of enterprise networks us-
ing probabilistic attack graphs,” in Network Security Metrics. Springer,
2017, pp. 53–73.

[24] F. Yamaguchi, F. Lindner, and K. Rieck, “Vulnerability extrapolation:
assisted discovery of vulnerabilities using machine learning,” in USENIX
conference on Offensive technologies, 2011, pp. 13–13.

[25] G. Grieco, G. L. Grinblat, L. Uzal, S. Rawat, J. Feist, and L. Mounier,
“Toward large-scale vulnerability discovery using machine learning,” in
ACM Conference on Data and Application Security and Privacy.

[26] S. M. Ghaffarian and H. R. Shahriari, “Software vulnerability analysis
and discovery using machine-learning and data-mining techniques: A
survey,” ACM Computing Surveys, vol. 50, no. 4, p. 56, 2017.

[27] J. A. Harer, L. Kim, R. L. Russell, O. Ozdemir, L. R. Kosta, A. Ranga-
mani, L. H. Hamilton, G. I. Centeno, J. R. Key, P. M. Ellingwood,
M. W. McConley, J. M. Opper, S. Chin, and T. Lazovich, “Automated
software vulnerability detection with machine learning,” 2018.

[28] R. Russell, L. Kim, L. Hamilton, T. Lazovich, J. Harer, O. Ozdemir,
P. Ellingwood, and M. McConley, “Automated vulnerability detection
in source code using deep representation learning,” in IEEE Int’l Conf.
on Machine Learning and Applications (ICMLA), 2018, pp. 757–762.

[29] M. Zolanvari, M. A. Teixeira, L. Gupta, K. M. Khan, and R. Jain,
“Machine learning based network vulnerability analysis of industrial
internet of things,” IEEE Internet of Things Journal, 2019.

[30] D. of Homeland Security, “Recommended practice for
patch management of control systems,” https://ics-cert.us-
cert.gov/sites/default/files/recommended practices/RP Patch Managem-
ent S508C.pdf, 2008.

[31] “Cvss,” ”https://www.first.org/cvss/v2/guide”.
[32] S.-H. Liao, “Expert system methodologies and applications—a decade

review from 1995 to 2004,” Expert systems with applications, vol. 28,
no. 1, pp. 93–103, 2005.

[33] “Cpe,” https://nvd.nist.gov/products/cpe.
[34] T. Lei, R. Barzilay, and T. Jaakkola, “Rationalizing neural predictions,”

arXiv preprint arXiv:1606.04155, 2016.

